
Note: In this problem set, expressions in green cells match corresponding expressions in the 
text answers.
Clear["Global`*⋆"]

1 - 10 Zeros
Determine the location and order of the zeros.

1. Sin
1

2
z

4

Clear["Global`*⋆"]

f1[z_] = Sin
1

2
z

4

Sin
z

2

4

I make a table to look at. The first non-zero derivative position is at 4th order, that is in 
agreement with text answer. (There is no need to look at odd z-coefficients.) The location 
consists of even multiples of 2 π.

TableForm[Table[
{i, ±(i π), D[f1[z], {z, i}], D[f1[z], {z, i}] /∕. z → i π}, {i, 0, 6, 2}],

TableHeadings → {{}, {"D-−Num.", "z", "Derivative", "Value"}}]

D-−Num. z Derivative Value

0 ±0 Sin z
2

4 0

2 ±(2 π) 3 Cos z
2

2 Sin z

2

2
-− Sin z

2

4 0

4 ±(4 π) 3
2
Cos z

2

4
-− 12 Cos z

2

2 Sin z

2

2
+ 5

2
Sin z

2

4 3

2

6 ±(6 π) -− 15
2
Cos z

2

4
+ 48 Cos z

2

2 Sin z

2

2
-− 17

2
Sin z

2

4

-− 15
2

3. (z + 81 ⅈ)4

Clear["Global`*⋆"]

f2[z_] = (z + 81 ⅈ)4

(81 ⅈ + z)4

Obviously f2 has a simple zero, and there is evidently a theorem that states that if a func-
tion has a simple zero, it has a zero at a raised integer power. So to investigate



TableForm[
Table[{i, D[f2[z], {z, i}], D[f2[z], {z, i}] /∕. z → -−81 ⅈ}, {i, 6}]]

1 4 (81 ⅈ + z)3 0
2 12 (81 ⅈ + z)2 0
3 24 (81 ⅈ + z) 0
4 24 24
5 0 0
6 0 0

Since the 4th order is the first occasion when the evaluated derivative does not equal 
zero, then f2 has a 4th order zero. The location is -81 ⅈ.

5. z-−2 Sin[π z]2

Clear["Global`*⋆"]

f3[z_] = z-−2 Sin[π z]2

Sin[π z]2

z2

I split the results into two tables because of line length. When z=2, the derivative is non-
zero, because the cosine part of the third term survives. This is second order, and the 
location is z=±2.

TableForm[Table[{i, ±(i ), D[f3[z], {z, i}]}, {i, 0, 3}],
TableHeadings → {{}, {"D-−Num.", "z", "Derivative"}}]

D-−Num. z Derivative

0 ±0 Sin[π z]2

z2

1 ±1 2 π Cos[π z] Sin[π z]
z2

-− 2 Sin[π z]2

z3

2 ±2 -− 8 π Cos[π z] Sin[π z]
z3

+ 6 Sin[π z]2

z4
+ 2 π2 Cos[π z]2-−2 π2 Sin[π z]2

z2

3 ±3 36 π Cos[π z] Sin[π z]
z4

-− 8 π3 Cos[π z] Sin[π z]
z2

-− 24 Sin[π z]2

z5
-− 6 2 π2 Cos[π z]2-−

z3

TableForm[Table[{i, ±(i ), D[f3[z], {z, i}] /∕. z → i }, {i, 0, 3}],
TableHeadings → {{}, {"D-−Num.", "z", "Derivative", "Value"}}]

Power::infy: Infiniteexpression 
1

02
 encountered. !

Infinity::indet: Indeterminateexpression 0 ComplexInfinity encountered. !

D-−Num. z Derivative
0 ±0 Indeterminate
1 ±1 0
2 ±2 π2

2

3 ±3 -− 4 π2

9
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7. z4 + (1 -− 8 ⅈ) z2 -− 8 ⅈ

Clear["Global`*⋆"]

f4[z_] = z4 + (1 -− 8 ⅈ) z2 -− 8 ⅈ

-−8 ⅈ + (1 -− 8 ⅈ) z2 + z4

Solving the function shows that solutions exist at the zeroth or simple order, and gives the 
locations.
Solve[f4[z] ⩵ 0, z]

{{z → -−2 -− 2 ⅈ}, {z → -−ⅈ}, {z → ⅈ}, {z → 2 + 2 ⅈ}}

9.  Sin[2 z] Cos[2 z]

Clear["Global`*⋆"]

f5[z_] = Sin[2 z] Cos[2 z]

Cos[2 z] Sin[2 z]

If I suspect a simple solution, I should try to solve. I find that simple solutions exist, with 
locations shown below.
Solve[f5[z] ⩵ 0, z]

{z → ConditionalExpression[π C[1], C[1] ∈ Integers]},

z → ConditionalExpression
1

2
-−

π

2
+ 2 π C[1], C[1] ∈ Integers,

z → ConditionalExpression
1

2

π

2
+ 2 π C[1], C[1] ∈ Integers,

z → ConditionalExpression
1

2
(π + 2 π C[1]), C[1] ∈ Integers

13 - 22 Singularities
Determine the location of the singularities, including at infinity. For poles also state the 
order.

13.
1

(z + 2 ⅈ)2
-−

z

z -− ⅈ
+

z + 1

(z -− ⅈ)2

Clear["Global`*⋆"]

By inspection and without further ado, I see the problem function has two second order 
poles, one at ⅈ, another at -2ⅈ.
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15. z Exp
1

(z -− 1 -− ⅈ)2


Clear["Global`*⋆"]

Theorem 4 on p. 717 has implications. Looking at the inverse of the problem function, since

z Exp
1

(z -− 1 -− ⅈ)2


-−1

ⅇ-− 1
((-−1-−ⅈ)+z)2

z

Limit
ⅇ-− 1

((-−1-−ⅈ)+z)2

z
, z → ∞

0

has a zero at ∞ (first order), it means that its inverse, the problem function, has a 
(simple) pole at infinity.

f6[z_] = z Exp
1

(z -− 1 -− ⅈ)2


ⅇ
1

((-−1-−ⅈ)+z)2 z

If I try writing

Series z Exp
1

(z -− (1 + ⅈ))2
, {z, 1 + ⅈ, 5}

ⅇ
1

((-−1-−ⅈ)+z)2 (1 + ⅈ) + (z -− (1 + ⅈ)) + O[z -− (1 + ⅈ)]6

what is returned by Mathematica is not useful, apparently because Mathematica does not 
wish to sacrifice what it considers the most logical form of the expression. What I can do is 
write

ser = Normal@Series[z Exp[z], {z, 0, 6}] /∕. z →
1

(z -− (1 + ⅈ))2

1

120 ((-−1 -− ⅈ) + z)12
+

1

24 ((-−1 -− ⅈ) + z)10
+

1

6 ((-−1 -− ⅈ) + z)8
+

1

2 ((-−1 -− ⅈ) + z)6
+

1

((-−1 -− ⅈ) + z)4
+

1

((-−1 -− ⅈ) + z)2

(after MMAstackexchange question 44203, answered by poweierstrass) and there is more 
to look at. Although the terms in the request are limited in number to 6, it is clear that 
the principal part of the series potentially includes an infinite number of terms of the 
form z -− (1+ ⅈ) . According to the text this is the requirement for declaring the point 1+ i 
as an essential singularity.
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(after MMAstackexchange question 44203, answered by poweierstrass) and there is more 
to look at. Although the terms in the request are limited in number to 6, it is clear that 
the principal part of the series potentially includes an infinite number of terms of the 
form z -− (1+ ⅈ) . According to the text this is the requirement for declaring the point 1+ i 
as an essential singularity.

17. Cot[z]4

Clear["Global`*⋆"]

First the basics

Cot[z] ⩵
1

Tan[z]
⩵

Cos[z]

Sin[z]

line1 = Solve[Sin[z] ⩵ 0, z]

{{z → ConditionalExpression[2 π C[1], C[1] ∈ Integers]},
{z → ConditionalExpression[π + 2 π C[1], C[1] ∈ Integers]}}

Series[Sin[z], {z, 2 π, 5}]

(z -− 2 π) -−
1

6
(z -− 2 π)3 +

1

120
(z -− 2 π)5 + O[z -− 2 π]6

Series
Cos[z]

Sin[z]
, {z, 2 π, 5}

1

z -− 2 π
-−
1

3
(z -− 2 π) -−

1

45
(z -− 2 π)3 -−

2

945
(z -− 2 π)5 + O[z -− 2 π]6

I can conclude that Cot[z] is singular where Sin[z] is 0. The above cell shows 2π to be a 
simple pole of Cot[z].

Looking next at

Cot[z]4 ⩵
Cos[z]4

Sin[z]4

True

Series
Cos[z]4

Sin[z]4
, {z, 2 π, 5}

1

(z -− 2 π)4
-−

4

3 (z -− 2 π)2
+
26

45
-−

64

945
(z -− 2 π)2 -−

19 (z -− 2 π)4

2835
+ O[z -− 2 π]6

Since
Sin[0]4 ⩵ Sin[0]

True

and likewise for other integer multiples of 2π, Cot[z]4 has the same poles as Cot[z] (as 
shown in line1), except now the poles are 4th order.

Using the trick used in the last problem for getting Mathematica to overcome its shyness in 
providing series details, I can try
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ser = SeriesCos[z]4, {z, 0, 8} /∕. z →
1

z

SeriesData::sdatv: Firstargument 
1

z
 is nota validvariable. !

1 -− 2
1

z

2
+
5

3

1

z

4
-−
34

45

1

z

6
+
13

63

1

z

8
+ O

1

z

9

The version supplied above shows a developed series with a principal part which is infi-
nite in extent. If z is replaced by ∞, the base function has an essential singularity at ∞. 
And by theorem 4 on p. 717, this essential singularity is also shared by the Cot[z]4 
function.

19.
1

ⅇz -− ⅇ2 z

Clear["Global`*⋆"]

Solve
1

ⅇz -− ⅇ2 z

-−1

⩵ 0, z

{{z → ConditionalExpression[2 ⅈ π C[1], C[1] ∈ Integers]}}

By theorem 4, p. 717, the zeros revealed above imply poles at the same locations in the 
inverse, i.e. the problem version of the function. The zeros are first order, so the poles are 
simple.

Looking further,

Series
1

ⅇz -− ⅇ2 z
, {z, 0, 5}

-−
1

z
+
3

2
-−
13 z

12
+
z2

2
-−
119 z3

720
+
z4

24
-−
253 z5

30 240
+ O[z]6

According to example 5 on p. 718, the function ⅇzhas an essential singularity at ∞. The 
problem function, which incorporates this function as an element, must share the 
characteristic.

21.
ⅇ1/∕(z-−1)

ⅇz -− 1

Clear["Global`*⋆"]
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def = Series
ⅇ1/∕(z-−1)

ⅇz -− 1
, {z, 0, 5}

1

ⅇ z
-−

3

2 ⅇ
+

z

12 ⅇ
+
59 z3

720 ⅇ
+

z4

8 ⅇ
+
815 z5

6048 ⅇ
+ O[z]6

tyu = ExpToTrig
ⅇ1/∕(z-−1)

ⅇz -− 1


Cosh 1
-−1+z



-−1 + Cosh[z] + Sinh[z]
+

Sinh 1
-−1+z



-−1 + Cosh[z] + Sinh[z]

The following diagnoses a singularity.
Solve[-−1 + Cosh[z] + Sinh[z] ⩵ 0, z]

{{z → ConditionalExpression[2 ⅈ π C[1], C[1] ∈ Integers]}}

And the following tests it.
tyu1 = N[tyu /∕. z → 2 π ⅈ]

Power::infy: Infiniteexpression 
1

0
 encountered. !

Power::infy: Infiniteexpression 
1

0
 encountered. !

Infinity::indet: Indeterminateexpression ComplexInfinity+ComplexInfinity encountered. !

Indeterminate

I still need to do an inventory of essential singularities. I see that ⅇz is lurking in the 
denominator. I re-use the argument that, as the possessor of an essential singularity at ∞ 
(by example 5, p.718), its incorporation into the problem function transfers the trait to 
the problem function. The same statement holds for the numerator of the problem func-
tion, where the assumption of the value of 1 by z shows the essential singularity at that 
point, also as mentioned in example 5.
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